Getting Started with PySpark: Difference between revisions
No edit summary |
No edit summary |
||
| Line 74: | Line 74: | ||
) | ) | ||
country_totals.show()</pre> | country_totals.show()</pre> | ||
== Better Custom UDF == | |||
<pre> | |||
from pyspark.sql.functions import count, col | |||
from pyspark.sql.functions import udf | |||
from pyspark.sql.types import StringType | |||
def getErrorType ( errorString ): | |||
if errorString is None: | |||
return 'empty' | |||
map = { 'moved': ['MOVED'], | |||
'zip': ['ZIP'], | |||
'apt': ['APT','FLAT'], | |||
'box': ['P O BOX', 'PO BOX'], | |||
'street': ['STREET','ADDRESS','HOUSE NBR', 'ADD', 'ADRESS', 'ST NUMR', 'WRG ADRS'], | |||
'phone': ['CONTACT NUMBER', 'NEED NUMBER', 'TEL', 'WRONG NUM', 'WRONG NMBR', 'WRONG #', 'CONTACT NUMBER', 'LANDLINE', 'MOBIL', 'PHONE NO', 'CELL', 'PHONE','PH','MOBILE'], | |||
'missing': ['PERSON', 'NO RESPONSE', 'REACHABLE', 'NO ANSWER'], | |||
'missort': ['SORT'] | |||
} | |||
for key,searchlist in map.items(): | |||
for searchterm in searchlist: | |||
print ("{} - {}".format(errorString, searchterm) ) | |||
if ( errorString.find(searchterm) >= 0 ): | |||
return key | |||
return 'unknown' | |||
myudf = udf(getErrorType, StringType()) | |||
subsetDF = ( cleanDF | |||
.select("COMMENT_DESC") | |||
.withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) ) | |||
) | |||
unknownDF = subsetDF.select ("*").filter("ERROR_CLASSIFICATION='unknown'") | |||
unknownDF.show(30) | |||
unknownDF.repartition(1).write.format('csv').mode('overwrite').options(header="true",sep=",").save(path="unknown.csv") | |||
error_totals = ( subsetDF | |||
.select ( "ERROR_CLASSIFICATION") | |||
.groupby("ERROR_CLASSIFICATION") | |||
.agg(count("*").alias("count")) | |||
.sort(col("count").desc()) | |||
) | |||
error_totals.show()</pre> | |||
== Cool trick to display panda data frame == | == Cool trick to display panda data frame == | ||
Revision as of 17:53, 1 November 2019
from pyspark.sql import SparkSession
spark = SparkSession \
.builder \
.appName("Python Spark SQL basic example") \
.config("spark.some.config.option", "some-value") \
.getOrCreate()
import pyspark.sql.functions as F
Load some data
df = spark.read.load("DEX03s - 2019-10-07.csv",
format="csv", sep=",", inferSchema="true", header="true")
Find columns that are more than 90% null
threshold = df.count() * .90 null_counts = df.select([F.count(F.when(F.col(c).isNull(), c)).alias(c) for c in df.columns]).collect()[0].asDict() to_drop = [k for k, v in null_counts.items() if v >= threshold ]
Drop Null columns
clean = df.drop(*to_drop) display(clean)
Create a subset of records
subsetDF = cleanDF.limit(100).select("COMMENT_DESC")
map = { 'zip': ['ZIP'], 'moved': ['MOVED'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS'] }
print(subsetDF.count())
subsetDF.show()
Categorize records using a User Defined Fucntion (UDF)
from pyspark.sql.functions import count, col
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
def getErrorType ( errorString ):
if errorString is None:
return 'empty'
map = { 'moved': ['MOVED'], 'zip': ['ZIP'], 'apt': ['APT'], 'box': ['P O BOX'],'street': ['STREET','ADDRESS'] }
for key,searchlist in map.items():
for searchterm in searchlist:
print ("{} - {}".format(errorString, searchterm) )
if ( errorString.find(searchterm) >= 0 ):
return key
return 'unknown'
myudf = udf(getErrorType, StringType())
subsetDF = ( cleanDF
.select("COMMENT_DESC")
.withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) )
)
print(subsetDF.count())
subsetDF.show()
country_totals = ( subsetDF
.select ( "ERROR_CLASSIFICATION")
.groupby("ERROR_CLASSIFICATION")
.agg(count("*").alias("count"))
.sort(col("count").desc())
)
country_totals.show()
Better Custom UDF
from pyspark.sql.functions import count, col
from pyspark.sql.functions import udf
from pyspark.sql.types import StringType
def getErrorType ( errorString ):
if errorString is None:
return 'empty'
map = { 'moved': ['MOVED'],
'zip': ['ZIP'],
'apt': ['APT','FLAT'],
'box': ['P O BOX', 'PO BOX'],
'street': ['STREET','ADDRESS','HOUSE NBR', 'ADD', 'ADRESS', 'ST NUMR', 'WRG ADRS'],
'phone': ['CONTACT NUMBER', 'NEED NUMBER', 'TEL', 'WRONG NUM', 'WRONG NMBR', 'WRONG #', 'CONTACT NUMBER', 'LANDLINE', 'MOBIL', 'PHONE NO', 'CELL', 'PHONE','PH','MOBILE'],
'missing': ['PERSON', 'NO RESPONSE', 'REACHABLE', 'NO ANSWER'],
'missort': ['SORT']
}
for key,searchlist in map.items():
for searchterm in searchlist:
print ("{} - {}".format(errorString, searchterm) )
if ( errorString.find(searchterm) >= 0 ):
return key
return 'unknown'
myudf = udf(getErrorType, StringType())
subsetDF = ( cleanDF
.select("COMMENT_DESC")
.withColumn('ERROR_CLASSIFICATION', myudf( cleanDF['COMMENT_DESC'] ) )
)
unknownDF = subsetDF.select ("*").filter("ERROR_CLASSIFICATION='unknown'")
unknownDF.show(30)
unknownDF.repartition(1).write.format('csv').mode('overwrite').options(header="true",sep=",").save(path="unknown.csv")
error_totals = ( subsetDF
.select ( "ERROR_CLASSIFICATION")
.groupby("ERROR_CLASSIFICATION")
.agg(count("*").alias("count"))
.sort(col("count").desc())
)
error_totals.show()
Cool trick to display panda data frame
from IPython.display import display, HTML display(HTML(country_totals.toPandas().to_html()))
Plotting Bar Graph
If you want the count calculated automatically (default)
from plotnine import ggplot, geom_point, aes, stat_smooth, facet_wrap ggplot( country_totals.limit(10).toPandas() , aes(x='COUNTRY_CD' ) ) + geom_bar()
To specify a Y value explicitly, use stat='identity'
from plotnine import ggplot, geom_point, aes, stat_smooth, facet_wrap ggplot( country_totals.limit(10).toPandas() , aes(x='COUNTRY_CD',y='count' ) ) + geom_bar(stat='identity')